Abstract
The purpose of this study was to test the three-step targeting of tumors in mice using biotinylated antibody, streptavidin and radiolabeled biotin. Nude mice bearing subcutaneous LS180 human colon cancer xenografts were intravenously administered with 200 μg of the biotinylated anti-Tn monoclonal antibody MLS128, and 2 days later they got intravenous injection of 50 μg of streptavidin. They were intravenously injected 1, 4 or 7 days later with 0.5 μg of 111In-diethylenetriamine pentaacetic acid (DTPA)–biotin. The tumor uptake, determined 2 h later, was 1.4, 0.5 and 0.6% injected dose/gram of tissue (ID/g), respectively, and the blood radioactivity was 1.0, 0.2 and 0.2% ID/g, respectively. When the interval between the streptavidin and radiolabeled biotin injections was prolonged from 1 day to 7 days, the tumor-to-blood ratio 2 h after injection of 111In-labeled biotin increased from 1.5 to 4.0. Clear tumor images were obtained as early as 2 h after injection of radiolabeled biotin. In conclusion, these preliminary data suggested that the three-step method using the streptavidin–biotin system would be applicable in an experimental mouse tumor model and provides images of tumors rapidly and clearly after injection of radiolabeled biotin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.