Abstract

Three-step phase-shifting imaging ellipsometry is proposed for the dynamic measurement of a nanofilm's thickness profile in two dimensions. The designed apparatus consists of an ellipsometric optical configuration and an image-processing unit to perform phase-shifting imaging ellipsometry measurements, a key technique used to achieve dynamic and two-dimensional measurements. The uncertainties of the ellipsometric parameters ψ and Δ were evaluated based on the developed optical system and the proposed three-step phase-shifting technique. The thickness profile of a SiO2 nanofilm on a silicon substrate was measured to calibrate the proposed apparatus; results were comparable to those obtained by a commercial spectroscopic ellipsometer. The measured thickness profiles are almost flat over the area of 1.10 mm × 2.21 mm with the spatial resolutions of 1.58 and 4.62 μm in the horizontal and vertical directions, respectively. The differences of average thickness between the proposed apparatus and a commercial spectroscopic ellipsometer were less than 3 nm. Furthermore, measurement precision was validated by obtaining a standard deviation of less than 2.5 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.