Abstract

Three new Si-substituted polyoxovanadates (POVs), [Cd2(dien)2][Cd(dien)][Cd(Hdien)2][V15Si6O46(OH)2(H2O)]·7H2O (1), [Co(enMe)2]3[Co2(enMe)2(H2O)2][V16Si4O44(OH)2(H2O)]·6H2O (2), and [Co(teta)]4[V16Si4O42(OH)4(H2O)]·10H2O (3) (dien = diethylenetriamine; enMe = 1,2-diaminopropane; teta = triethylenetetramine) were synthesized by the hydrothermal method and characterized. Structural analysis sheds light on the fact that the {V15Si6O48}/{V16Si4O46} clusters of compounds 1-3 were formed by replacing {VO5} square pyramids in the classical {V18O42} cluster with {Si2O7} units. Compound 1 is a 2D bilayer structure formed by the [V15Si6O46(OH)2(H2O)]10- cluster and two types of bridging Cd complexes containing binuclear groups [Cd2(dien)2]4+. Compound 2 is a 3D framework constructed from the [V16Si4O44(OH)2(H2O)]10- cluster and two types of Co complex fragments including binuclear [Co2(enMe)2(H2O)2]4+. In compound 3, the [V16Si4O42(OH)4(H2O)]8- cluster is connected with bridging [Co(teta)]2+ to expand into a 2D network. Compounds 1 and 3 represent the first 2D assemblies based on a vanadosilicate cluster. 1-3 served as heterogeneous catalysts and exhibited highly efficient catalytic activities for the Knoevenagel condensation under mild ambient conditions with low catalyst loading, featuring the open Lewis base {V15Si6O48}/{V16Si4O46} sites and Lewis acid Cd2+/Co2+ sites. The conversion of benzaldehyde was up to 99.3% in 80 min at room temperature using 1 as a heterogeneous catalyst with only 0.37% catalyst loading. Moreover, compounds 1-3 as catalysts for selective oxidation of styrene to benzaldehyde exhibited excellent catalytic performance, high selectivity and could be readily recycled. Most strikingly, compound 1 showed excellent catalytic performance with 97.6% conversion of styrene and 100% selectivity of benzaldehyde in 15 min. In addition, the catalytic activity of catalyst 1 was well maintained after five cycling reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.