Abstract

A new family of three-point derivative free methods for solving nonlinear equations is presented. It is proved that the order of convergence of the basic family without memory is eight requiring four function-evaluations, which means that this family is optimal in the sense of the Kung–Traub conjecture. Further accelerations of convergence speed are attained by suitable variation of a free parameter in each iterative step. This self-accelerating parameter is calculated using information from the current and previous iteration so that the presented methods may be regarded as the methods with memory. The self-correcting parameter is calculated applying the secant-type method in three different ways and Newton’s interpolatory polynomial of the second degree. The corresponding R-order of convergence is increased from 8 to 4 ( 1 + 5 / 2 ) ≈ 8.472 , 9, 10 and 11. The increase of convergence order is attained without any additional function calculations, providing a very high computational efficiency of the proposed methods with memory. Another advantage is a convenient fact that these methods do not use derivatives. Numerical examples and the comparison with existing three-point methods are included to confirm theoretical results and high computational efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.