Abstract
Continuous production of ethyl acetate involves various separation challenges due to multiple azeotropes. In this study, three-phase advanced distillation method is applied through diverse purification scenarios for ternary separation of ethyl acetate system (ethyl acetate/water/ethanol). This highly non-ideal mixture contains four azeotropes and three distillation regions. To select the best distillation region, the separation feasibility and conceptual design of ethyl acetate three-phase distillation unit are comprehensively investigated by the extended boundary value method for various feed locations and numerous product recoveries. It was found that the region in which ethanol is a stable component was the most suitable region for the distillation process. Further, the conceptual design of the three-phase column is optimized by variation of reflux ratio and operating pressure. Ultimately, based on the conceptual design results, rigorous simulation of the process is accomplished and ethanol is separated with 99.25 mol % purity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.