Abstract

The chemical shift of water and fat resonances in proton MRI allows separation of water and fat signal from chemical shift encoded data. This work describes an automatic method that produces separate water and fat images as well as quantitative maps of fat signal fraction and T2* from complex multiecho gradient-recalled datasets. Accurate water and fat separation is challenging due to signal ambiguity at the voxel level. Whole-image optimization can resolve this ambiguity, but might be computationally demanding, especially for three-dimensional data. In this work, periodicity of the model fit residual as a function of the off-resonance was used to modify a previously proposed formulation of the problem. This gives a smaller solution space and allows rapid optimization. Feasibility and accurate separation of water and fat signal were demonstrated in breathhold three-dimensional liver imaging of 10 volunteer subjects, with both acquisition and reconstruction times below 20 s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.