Abstract

This work reports the innovative design and application of a three-dimensional (3D) TiO2@Cu2O@nickel foam electrode synergized with enzyme catalysis toward the proof-of-concept study for oxygen-independent photocathodic enzymatic detection. Specifically, a 3D-nanostructured photoelectrode has great potential in the semiconductor-based photoelectrochemical (PEC) biological analysis. On the other hand, using various photocathodes, cathodic PEC bioanalysis, especially the photocathodic enzymatic detection, represents an attractive frontier in the field. Different from state-of-the-art photocathodic enzymatic studies that are oxygen-dependent, herein, we present the ingenious design, characterization, and implementation of 3D TiO2@Cu2O@nickel foam photocathodes for the first oxygen-independent example. In such a configuration, the Cu2O acted as the visible-light absorber, while the TiO2 shell would simultaneously function as a protective layer for Cu2O and as a desirable substrate for the immobilization of enzyme biomolecules. Especially, because of the proper band positions, the as-designed photocathode exhibited unique O2-independent PEC property. Exemplified by glucose oxidases, the as-developed sensor exhibited positive response to glucose with good performance. Because various oxidases could be integrated with the system, this protocol could serve as a universal O2-independent platform for many other targets. This work is also anticipated to catalyze more studies in the advanced 3D photoelectrodes toward innovative enzymatic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.