Abstract

Despite the potential tunable properties of blank slate collagen-like proteins (CLP), an alternative to animal-originated collagen, assembling them into a stable 3D hydrogel to mimic extracellular matrix is a challenge. To address this constraint, the CLP (without hydroxyproline, CLPpro) and its variants encoding functional unnatural amino acids such as hydroxyproline (CLPhyp) and 3,4-dihydroxyphenylalanine (CLPdopa) were generated through genetic code engineering for 3D hydrogel development. The CLPhyp and CLPdopa were chosen to enhance the intermolecular hydrogen bond interaction through additional hydroxyl moiety and thereby facilitate the self-assembly into a fibrillar network of the hydrogel. Hydrogelation was induced through genipin as a cross-linker, enabling intermolecular cross-linking to form a hydrogel. Spectroscopic and rheological analyses confirmed that CLPpro and its variants maintained native triple-helical structure, which is necessary for its function, and viscoelastic nature of the hydrogels, respectively. Unlike CLPpro, the varients (CLPhyp and CLPdopa) increased pore size formation in the hydrogel scaffold, facilitating 3T3 fibroblast cell interactions. DSC analysis indicated that the stability of the hydrogels got increased upon the genetic incorporation of hydroxyproline (CLPhyp) and dopa (CLPdopa) in CLPpro. In addition, CLPdopa hydrogel was found to be relatively stable against collagenase enzyme compared to CLPpro and CLPhyp. It is the first report on 3D biocompatible hydrogel preparation by tailoring CLP sequence with non-natural amino acids. These next-generation tunable CLP hydrogels open a new venue to design synthetic protein-based biocompatible 3D biomaterials for tissue engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.