Abstract

In this paper, a nonlinear suboptimal guidance system is presented for the missile targeting an unknown arbitrary target. An integrated quadratic performance index is minimized in this guidance law, and the whole design is based on the exact 3D nonlinear missile-target dynamics without any linearization. Considering that the Hamilton–Jacobi–Bellman equation of a nonlinear system is quite difficult to be solved, the [Formula: see text] method is used to obtain the approximate solution without complicated online computations. Moreover, the target accelerations are regarded as the unknown disturbances, and the robustness against the target maneuvering and the external disturbances is enhanced by introducing the feedforward compensation based on the nonlinear disturbance observer. In addition, no priori knowledge like the time-to-go is needed in this suboptimal guidance law. Simulation studies show that the proposed composite guidance system can guarantee that the missile intercepts the arbitrary maneuvering target with satisfied performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.