Abstract

A self-consistent three-dimensional particle-based model of the source extraction–acceleration transition region of a surface-produced negative ion source is developed. Some considerations are advanced on the characteristic of negative ion transport: it is purely electrostatic while collision-induced (charge exchange with atoms) and magnetic-induced (ion gyration around the filter field) transport contributions play no relevant role in H− extraction. In fact, the calculations presented here indicate that the key point is the penetration of the extraction grid field inside the plasma grid collar and the source region, which helps in removing the negative ions produced on the surface. This study suggests that the best plasma grid shape is characterized so as to allow the extraction field to arrive directly on the surface-emitting H− ions and that the best aperture size is directly related to the particular shape used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.