Abstract

The three-dimensional (3D) structures of macroporous alumina, produced by a novel method that combines gel casting with expandable polymeric microspheres as a sacrificial templating material, have been characterised by X-ray micro-computed tomography (μ-CT). The grey-scale intensity tomogram data produced by the X-ray μ-CT was segmented into porous and solid phases and the individual pores were identified. We compared two-dimensional slices of the analysed data with the corresponding scanning electron microscopy images and showed that the structural features of the pores were well reproduced in the X-ray μ-CT images. 3D visualisations of the pore structure and the pore network were also shown. The open porosity obtained from X-ray μ-CT corresponded well with the porosity derived from mercury porosimetry for pores larger than the voxel dimension (3 μm). The quantitative analysis also yielded information on the spatial variations in porosity and the number of connected neighbours of pores. The 3D data was used to relate the calculated permeability to the open porosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.