Abstract
Three-dimensional spatially growing perturbations in a two-dimensional compressible boundary layer are considered within the scope of linearized Navier–Stokes equations. The Cauchy problem is solved under the assumption of a finite growth rate of the disturbances. It is shown that the solution can be presented as an expansion into a biorthogonal eigenfunction system. The result can be used in a decomposition of flow fields derived from computational studies when pressure, temperature, and all the velocity components, together with some of their derivatives, are available. The method can also be used if partial data are available when a priori information may be utilized in the decomposition algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.