Abstract

A three-dimensional computer simulation of dynamic processes occurring in a domain wall moving in a soft-magnetic uniaxial film with in-plane anisotropy has been performed based on the micromagnetic approach. It has been shown that the domain wall motion is accompanied by topological transformations of the magnetization distribution, or, more specifically, by “fast” processes associated with the creation and annihilation of vortices, antivortices, and singular (Bloch) points. The method used for visualizing the topological structure of magnetization distributions is based on the numerical determination of topological charges of two types by means of the integration over the contours and surfaces with variable geometry. The obtained data indicate that the choice of the initial configuration predetermines the dynamic scenario of topological transformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.