Abstract

Based on the Eulerian-Lagrangian framework, a reactive multi-phase particle-in-cell (MP-PIC) method is used to simulate biomass gasification in a three-dimensional pilot-scale dual fluidized bed (DFB) with complex geometric structure. After model validation, the optimal parameters for the simulation are derived via the independence tests. Thermochemical behaviors of bed materials and biomass particles are explored and the effects of temperature, steam-to-biomass ratio, and equivalence ratio on gasification performance are unveiled. The results show that the tendency of gas and solid temperature is opposite in the gasifier and combustor. The DFB can effectively control temperature, showing an excellent circulating and heat transfer feature. The pressure gradient distribution is highly related to the solid holdup distribution. Higher temperature and steam-to-biomass ratio increase lower heating value (LHV) and combustible gas concentration, resulting in the enhancement of gasification performance. Higher equivalence ratio decreases the LHV and combustible gas concentration, giving rise to a negative influence on the gasification performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.