Abstract

Tin–manganese oxide film with three-dimensional (3D) reticular structure has been prepared by electrostatic spray deposition (ESD). X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate that the film is amorphous. X-ray-photoemission spectroscopy (XPS) demonstrates that the 3D grid is composed of tin–manganese oxide. As an anode electrode for the lithium ion battery, the tin–manganese oxide film has 1188.3 mAh g −1 of initial discharge capacity and very good capacity retention of 656.2 mAh g −1 up to the 30th cycle. Such a composite film can be used as an anode for lithium ion batteries with higher energy densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.