Abstract

Hydrogenated amorphous silicon (a-Si:H)-based infrared photodiodes were fabricated by coating a-Si:H thin-film p-i-n layers over hydrothermally-synthesized disordered zinc oxide (ZnO) nanowire (NW) networks. Due to enhanced light scattering, the reversed biased three dimensional (3-D) radial-junction NW diodes showed an ∼10× increase in photocurrent under a broad spectrum (800–2000 nm) infrared (IR) illumination compared to planar devices. The diodes were optimized by using InGaZnO (IGZO) transparent top contacts that had 20% higher optical transmission in the IR compared to Al-doped ZnO electrodes. Reverse-bias dark current was minimized by optimizing the area of the NW sidewalls and the a-Si:H shell layer thickness. The former reduces the effects of carrier recombination along the NW core–shell interface and the latter minimizes the tunnelling current across the radial-junction device. An enhancement of ∼100× was achieved for these devices compared to non-optimized diodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.