Abstract

We present a simple and straightforward method for determining absolute spatial orientations of transition dipole moments of single fluorescent molecules. Far-field polarization microscopy provides angles of the dipole moments projected in the plane of the sample. Optical field near total internal reflection surfaces has a strong component perpendicular to the sample and, for a given in-plane angle, provides unambiguous orientation of the molecular dipole moment. Experimentally, both excitation modes are alternated to monitor real-time conformational dynamics of tetramethylrhodamine molecules covalently attached to a quartz substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.