Abstract
Monte Carlo ray tracing, coupled to a finite volume solver, is used to model 3D heat transfer in a parabolic trough solar concentrator system. The nonuniform distribution of the incident solar radiation, the radiative exchange between the various receiver surfaces, and the heat gain/loss around the receiver's circumference and along the system's axis are determined for spectral radiative properties of the receiver and concentrator surfaces. The computed heat losses and thermal efficiencies agree well with experimental data. Besides the beneficial information on peak temperatures and heat flux, the 3D model is able to predict glass temperatures more accurately than previous gray models and temperature correlations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.