Abstract

This paper investigates the performance of a high temperature proton exchange membrane (PEM) fuel cell. Both experimental work and numerical simulation are conducted. The high temperature proton exchange membrane is based on polybenzimidazole (PBI) doped with phosphoric acid. A single cell with triple serpentine flow channels was operated at steady state at various levels of temperature, pressure, and air stoichiometry. A three-dimensional model was used to simulate the cell performance, and polarization curves were used to validate the experimental values. The theoretical model accurately predicts the experimental results. A sound knowledge of the impact of various variables at various levels of the cell operation is necessary for unraveling the parametric influence and can prove extremely useful for optimizing the cell operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.