Abstract

Simulations of three-dimensional laminar mixed convection in a vertical duct with plane symmetric sudden expansion are presented to illustrate the effects of the buoyancy-assisting force and the duct’s aspect ratio on flow bifurcation and heat transfer. The stable laminar bifurcated flow regime that develops in this geometry at low buoyancy levels leads to nonsymmetric temperature and heat transfer distributions in the transverse direction, but symmetric distributions with respect to the center width of the duct in the spanwise direction. As the buoyancy force increases, due to increases in wall heat flux, flow bifurcation diminishes and both the flow and the thermal fields become symmetric at a critical wall heat flux. The size of the primary recirculation flow region adjacent to the sudden expansion increases on one of the stepped walls and decreases on the other stepped wall as the wall heat flux increases. The maximum Nusselt number that develops on one of the stepped walls in the bifurcated flow regime is significantly larger than the one that develops on the other stepped wall. The critical wall heat flux increases as the duct’s aspect ratio increases for fixed Reynolds number. The maximum Nusselt number that develops in the bifurcated flow regime increases as the duct’s aspect ratio increases for fixed wall heat flux and Reynolds number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.