Abstract

Spatial magnetization distribution of cobalt layer is studied by means of three-dimensional micromagnetic simulations in the range of cobalt thickness d from 21 to 249 nm. In this range, a spin-reorientation phase transition occurs, while the cobalt thickness increases, from a state with in-plane magnetization, to a state with out-of-plane components of magnetization. An in nite cobalt layer is modelled by the 750 nm×750 nm×d structure consisting of cubic cells of size of 3 nm and the periodic boundary conditions. For larger thicknesses, a labyrinth, partially closed, stripe structure has been found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.