Abstract

A three-dimensional macro-mechanical finite element (FE) model is developed to study the machining response of unidirectional (UD) carbon fiber reinforced polymer composites. This study is conducted for a range of fiber orientations, depths of cut and rake angles both experimentally as well as numerically. In the FE model the material properties are assumed as degraded based on the three-dimensional Tsai-Hill failure criterion. Cutting/thrust forces obtained from the FE simulation matches well with the experimental observations. Cutting force increases with fiber orientation and depth of cut but is less influenced by rake angle. Chip formation mechanism is observed under an optical microscope and is compared with FE simulation results. The chip formation mechanism predicted by FE simulations has a good agreement with experimental observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.