Abstract
In Japan, many major cities are located on tectonic basins which are surrounded by faults and underlain by soft alluvial materials. Because these areas are subject to earthquake damages, it is important to determine their seismic engineering characteristics. Geotechnical databases which contain many borehole logs are useful information sources for this type of analysis. Each datum stored in the database has a value or an attribute, and its location is irregular in both horizontal and vertical directions. A new interpolation method based on the optimization principle is proposed here to deal with such three-dimensionally distributed data. Susceptibility of unconsolidated ground to liquefaction is known to be related to the content of loose and saturated sand. The mixture ratio of several soil types in a deposit, i.e., granular composition, is strongly influenced by the sedimentary environment. There are two numerical methods: the optimization principle method (OPM) used to determine three-dimensional distribution of granular composition and the model used to evaluate liquefaction. The application of the proposed methods to two locations in Japan indicated that the zones with high susceptibility to liquefaction were indeed those that had suffered from liquefaction during past earthquakes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.