Abstract

Abstract Microfluidics, the study of fluid flow through structures with micrometer scale dimensions, is an increasingly important discipline within a number of commercial and industrial applications. One focus of active microfluidic research at the Stanford University Microscale Heat Transfer Laboratories (MHTL) is mass and heat transport in two-phase flows, which has applications in the cooling of integrated circuits and the management of water created in PEM fuel cells. At its core, two-phase microfluidics is the study of interactions between moving liquids and/or gases and/or solids (though not necessarily stationary) structures. Advanced confocal microscopy, with its ability to visualize and measure both flow and structure on a single instrumental platform, will certainly play a key role in the continuing development of microfluidic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.