Abstract

Although amide proton transfer-weighted (APTw) imaging is reported by 2-dimensional (2D) spin-echo-based sequencing, 3-dimensional (3D) APTw imaging can be obtained by gradient-echo-based sequencing. The purpose of this study was to compare the efficacy of APTw imaging between 2D and 3D imaging in patients with various brain tumors. A total of 49 patients who had undergone 53 examinations [5 low-grade gliomas (LGG), 16 high-grade gliomas (HGG), 6 malignant lymphomas, 4 metastases, and 22 meningiomas] underwent APTw imaging using 2D and 3D sequences. The magnetization transfer ratio asymmetry (MTR asym ) was assessed by means of region of interest measurements. Pearson correlation was performed to determine the relationship between MTR asym for the 2 methods, and Student's t test to compare MTR asym for LGG and HGG. The diagnostic accuracy to differentiate HGG from LGG of the 2 methods was compared by means of the McNemar test. Three-dimensional APTw imaging showed a significant correlation with 2D APTw imaging ( r = 0.79, P < 0.0001). The limits of agreement between the 2 methods were -0.021 ± 1.42%. The MTR asym of HGG (2D: 1.97 ± 0.96, 3D: 2.11 ± 0.95) was significantly higher than those of LGG (2D: 0.46 ± 0.89%, P < 0.01; 3D: 0.15 ± 1.09%, P < 0.001). The diagnostic performance of the 2 methods to differentiate HGG from LGG was not significantly different ( P = 1). The potential capability of 3D APTw imaging is equal to or greater than that of 2D APTw imaging and is considered at least as valuable in patients with brain tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.