Abstract

AbstractThree‐dimensional (3‐D) computational code was implemented to solve conservation equations based on finite volume method as to simulate 1.8 L Ford diesel engine. Velocity and pressure of each computational cell is achieved by SIMPLE (semi‐implicit method for pressure‐linked equations) algorithm. For the exergetic aspect, the initial condition is set at 0.1 MPa and 300 K. The engine modeling is performed with 130 °, 140 °, and 150 ° with respect to x‐axis under 1500 and 2500 rpm engine speeds. The results, however, indicate better air/fuel mixture (near stoichiometric equivalence ratio) for 130 ° of injection angle, albeit smaller spray droplets (lower sauter mean diameter) were introduced with 140 °. It is seen that higher soot and NOx mass fraction is attributed to 1500 rpm engine speed. The highest NOx and soot are exhausted at 130 ° and 150 ° of injection, respectively. Second law efficiency was calculated for different spray angle and engine speed schemes such that 36.62%, 30.2%, and 32.07% are associated with 130 °, 140 °, and 150 ° of injection angle under 1500 rpm, respectively. In terms of engine performance, that is, indicated mean effective pressure, indicated specific fuel consumption, and temperature, the best performance metrics are of 130 ° equal to 15.4 bar, 0.3856 kg/kW‐h, and 2074.97 K under 1500 rpm, respectively. Instant irreversibility rate is the highest amount with peak value of 17.48 J/deg for 130 deg‐1500 rpm, while 140 ° shows higher mean irreversibility rate over crank angle (CA) period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.