Abstract

Character of activation energy and nanofluids has a prominent significance in the field of oil reservoir, chemical engineering, geothermal engineering, heat exchanger, food processing, heat and mass transportation and cooling devices. The aim of current study is to present the mathematical modeling and numerical solutions of three dimensional flow of Sutterby nanofluid past a bidirectional moving surface under the influences of mixed convection, binary chemical reactions, viscous dissipation and activation energy. Boundary layer theory is abduced to model the physical problem in the form of partial differential equations. The obtained partial differential system is metamorphosed into ordinary differential system by operating appropriate conversion. Fehlberg Runge Kutta scheme is applied to derive the numerical simulations of reduced non-dimensional differential model. It is gripping to explore that fluid velocities f′(η) and g′(η) have opposite behavior due to the enrichment of Sutterby fluid parameter β₁. Additionally, higher approximation of chemical reaction parameter and activation energy parameter has reverse trends on nanoparticle concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.