Abstract
Cell-directed deposition of aligned collagen fibrils during corneal embryogenesis is poorly understood, despite the fact that it is the basis for the formation of a corneal stroma that must be transparent to visible light and biomechanically stable. Previous studies of the structural development of the specialized matrix in the cornea have been restricted to examinations of tissue sections by conventional light or electron microscopy. Here, we use volume scanning electron microscopy, with sequential removal of ultrathin surface tissue sections achieved either by ablation with a focused ion beam or by serial block face diamond knife microtomy, to examine the microanatomy of the cornea in three dimensions and in large tissue volumes. The results show that corneal keratocytes occupy a significantly greater tissue volume than was previously thought, and there is a clear orthogonality in cell and matrix organization, quantifiable by Fourier analysis. Three-dimensional reconstructions reveal actin-associated tubular cell protrusions, reminiscent of filopodia, but extending more than 30 µm into the extracellular space. The highly extended network of these membrane-bound structures mirrors the alignment of collagen bundles and emergent lamellae and, we propose, plays a fundamental role in dictating the orientation of collagen in the developing cornea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.