Abstract

The present research aims to study the growth of the circular adhesion failure pre-existing at the interfaces of the strap adherend and the adhesive in a single lap joint. Three-dimensional nonlinear finite element analysis of adhesively bonded single lap joints made with high strength steel adherends under uniformly applied extension have been carried out. The interfacial stresses and strain energy release rate values, being indicative parameters, in the growth of the adhesion failures are computed in the vicinity of the pre-existing circular adhesion failure fronts when the load on single lap joint increases till failure. The magnitudes of the strain energy release rate are computed using the virtual crack closure technique. The results show that the sizes of the adhesion failure significantly influence the magnitudes of the interfacial stresses, the three modes of strain energy release rates and the load-bearing capacity of the single lap joint. The finite element analysis predicts that pre-embedded circular adhesion failures will not have grown from the pre-embedded circular adhesion failure front, instead the failure will be initiated from the overlap ends upon loading for the adhesive bonded single lap joint made with strong adherends and AV119 adhesive. The finite element analysis also proposes a method to calculate the strength of this type of joint configurations using the global shear strength of the adhesive and the intact bonded area. The finite element analysis predicted failure strength of the single lap joint is in good agreement with the experimentally obtained strength for the single lap joint containing pre-existing circular adhesion failure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.