Abstract
The counter-streaming instabilities arising in three-component electron plasmas are investigated analytically and numerically in the general non-symmetric case, i.e. whenHere n1n2and narepresent the electron particle density in the first and second beams and in the background (ambient) stationary plasma, respectively; U1and U2represent the streaming velocities of the two counter-streaming electron beams. No magnetic or temperature effects are considered; consequently the three components interact only through the electric collective fields and only longitudinal modes are present. The positive ions here represent a stationary neutralizing background. Combined analytical and numerical solutions of the dispersion equation indicate that the basic properties of the unstable plasma modes may change significantly, depending on the values of the dimensionless parameters e, a and g. Thus, the standing wave spectrum (Re ω = 0) which occurs in the symmetric case (ε = a = 1) without background (gr = 0) may be replaced by a mixed travellingstanding wave spectrum having a rather complex structure; the maximum growth rate could be also strongly affected. The transformation of the instability from ‘absolute’ into mixed ‘convective and absolute’ may have significant physical implications, especially for finite size plasma systems or finite length unstable interaction regions. The results are relevant for laboratory and (especially) astrophysical situations in which counter-streaming electron beams having unequal streaming velocities (and particle densities) penetrate plasma regions with significant relative particle concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.