Abstract

African swine fever (ASF) has one of the highest case-fatality rates among pig diseases. Europe was considered ASF-free for about two decades until 2007, when the virus was introduced into Georgia. Since then, it has been identified throughout Eastern Europe, and reached Belgium in late 2018, increasing the risk of ASF being introduced into neighboring countries—namely Germany, Luxembourg, the Netherlands, and France. French authorities have therefore reinforced surveillance measures to improve the probability of detecting ASF rapidly if it emerges in France. Predictive modeling may help to anticipate the extent of virus spread and evaluate the efficiency of these surveillance measures. A previously published and well-documented model that simulates ASF virus spread was therefore tailored to realistically represent the French situation in terms of the geographic distribution of swine production sites and the commercial trade between them on the one hand, and the implementation of surveillance protocols on the other. The outcomes confirmed the moderate spread of ASF through the swine trade network, a situation that had been previously highlighted for the case of Denmark. However, the diversity of the French pig production landscape has revealed a huge potential for the geographic dispersal of the virus, especially should the index case occur in a low-density area, with a median source-to-case distance reaching 300 km. Free-range herds, which are more likely to have interactions with wild boars, were also identified as potential entrance gate for the virus. Transmissions from conventional herds were quasi-exclusively due to swine movement on the commercial network, representing 99% of transmission events. In contrast, 81% of transmission events occurred in the neighborhood of the index herd when the virus was introduced in free-range herds. The current surveillance measures were found relatively efficient for detecting the virus in large herds, leading to detection rates of 94%. However, infections on smaller production sites—which often have free-range herds—were more difficult to detect and would require screening protocols specifically targeting these smaller herds.

Highlights

  • African swine fever virus is a DNA virus belonging to the Asfarviridae family (1)

  • Each production site was assigned to its relative density zone to assess the impact of the index case location on African swine fever (ASF) spread and control effectiveness

  • African swine fever has been spreading throughout Eastern Europe since 2007 and recently emerged in Western Europe (12)

Read more

Summary

Introduction

African swine fever virus is a DNA virus belonging to the Asfarviridae family (1). With a case-fatality rate close to 100%, ASF has huge economic consequences at herd level and at country level, due to the ban on exports following its emergence in a country officially free from the disease (2, 3).To date, sub-Saharan Africa is seriously affected by ASF, the virus being endemic in several countries (4). Taking the whole simulation process, only 15.2% of infected herds were detected Due to this low detection rate, which impairs the rapid implementation of control measures, and despite the low number of infected herds, the median epidemic duration was 20 days, though there was substantial variability ranging from 6 to 47 days. During this period, the number of clinical inspections reached 96 visits [1; 313] leading to a limited number of serological and virological investigations (4 [1; 36] and 1 [1; 11], respectively)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.