Abstract

The simplest and probably the most familiar model of statistical processes in the physical sciences is the random walk. This simple model has been applied to all manner of phenomena, ranging from DNA sequences to the firing of neurons. Herein we extend the random walk model beyond that of mimicking simple statistics to include long-time memory in the dynamics of complex phenomena. We show that complexity can give rise to fractional-difference stochastic processes whose continuum limit is a fractional Langevin equation, that is, a fractional differential equation driven by random fluctuations. Furthermore, the index of the inverse power-law spectrum in many complex processes can be related to the fractional derivative index in the fractional Langevin equation. This fractional stochastic model suggests that a scaling process guides the dynamics of many complex phenomena. The alternative to the fractional Langevin equation is a fractional diffusion equation describing the evolution of the probability density for certain kinds of anomalous diffusion. © 2006 Wiley Periodicals, Inc. Complexity 11: 33–43, 2006

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.