Abstract
A series of laboratory experiments was conducted at Inhaca Island Marine Biological Station, Mozambique, in order to assess the separate effects of turbidity, prey density, substrate type, pneumatophore density, and the combined effects of turbidity with the latter three, on rate of predation by the thorn fish Terapon jarbua (Forskål, 1775) on white shrimp Penaeus indicus and brown shrimp Metapenaeus monoceros. Significant interactions between turbidity and the other three factors on shrimp predation for both prey species were detected. Regardless of prey density, increasing turbidity decreased predation on P. indicus, but not on M. monoceros, for which increasing densities reduced the protective effect of turbidity. Increasing prey density increased predation on P. indicus in clear water, and increased predation on M. monoceros in low and high, but not in intermediate turbidity or clear water. The presence of a substrate suitable for burying decreased predation on M. monoceros in clear water, but not in the turbidity levels used. In clear water, solely sandy-shell substrate afforded protection to P. indicus, while in turbid water, no substrate offered significant protection and muddy substrate even increased prey vulnerability to fish probably as a result of increased preys' locomotor activity. Raising pneumatophores density seems to lower the protective value of turbidity for both species. In clear water, only low and high structure density provided a deterrent effect on predation on P. indicus; in turbid water, intermediate and higher structure density increased predation. Increasing structural complexity reduced predation on M. monoceros linearly in clear water; but in low turbid water it increased. In high turbid waters, the increase was only significant in intermediate pneumatophore density. High structural complexities impair the pursuing capacity of fish and thus decreased predation rates. The results indicate that the effective provision of shelter of different habitats depends not only on the various environmental parameters analysed, but also on the way they interact and on the behaviour of prey and predator as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental Marine Biology and Ecology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.