Abstract

Success of tissue engineering applications in regenerative medicine requires the preservation of tissue-engineered products at a low temperature. This can be successfully achieved by the use of cryoprotective agent (CPA). In this study, we formulated a unique injectable hydrogel for the purpose of cell delivery after cryopreservation by using polyampholyte CPA. The polyampholyte showed excellent post-thaw cell survival, and after thawing, the polymeric CPA did not have to be removed because of its low cytotoxicity. The polyampholyte could be transformed into a hydrogel by mixing with nanosilicates. Previously, nanosilicates were used to improve mechanical properties, but this is the first report of the use of a nanosilicate together with CPA to formulate hydrogels. Inclusion of the nanosilicate led to the formation of thixotropic hydrogels, which can be injected using fine needles. These gels with tunable mechanical properties can be injected into defect sites to form scaffolds for cell growth and tissue repair, and they do not require any separate seeding of cells before injection, thus eliminating the need for cell harvesting and cell maintenance. This is a distinct system in which cells can be cryopreserved until before usage; when required, the cells in the polyampholyte can be revived to their original state and the thixotropic hydrogel can be formed. The combination of thixotropy and cytocompatibility of the gels could enable a wide range of biomedical applications such as cell delivery and orthopedic repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.