Abstract

We measured indirect calorimetry and activity parameters, VO2 and VCO2 to extract respiratory exchange ratio (RER) and energy expenditure in both sexes of 30 inbred mouse strains of 6 genetic families at 9–13 weeks during one photophase and the subsequent scotophase. We observed a continuous distribution of all traits. While males had higher body weights than females, we observed no sex difference for food and water intake. All strains drank and fed more during the night even if they displayed no day–night difference in activity traits. Several strains showed absent or weak day–night variation in one or more activity traits and these included FVB and 129X1, males of 129S1, SWR, NZW, and SM, and females of SJL. In general females showed higher rearing and ambulatory activity with 6 and 9 strains, respectively, showing a sex difference. Fine motor movements, like grooming, showed less sex differences. RER underlied a strong day–night difference and no sex effect. Only FVB females and males of the RIIIS and SM strain had no day–night variation. Energy expenditure underlies a large day–night variation which was absent in SWR and in FVB females and RIIIS males. In general, female bodies had a tendency to higher energy expenditure values, which became a significant difference in C3H, MAMy, SM, DBA1, and BUB. Our data illustrate the diversity of these traits in male and female inbred mice and provide a resource in the selection of strains for future studies.

Highlights

  • MATERIALS AND METHODSBasic physiological and metabolic parameters are influenced by the genetic background and environmental factors and have a large impact on the outcome of behavioral and other experimental studies in mice

  • In the last decades the availability of genetically diverse inbred mouse strains has increased, allowing the selection of specific inbred mouse strains for the investigation of the genetics of particular traits and for the development of suitable transgenic mouse models for diseases, provided that strain-specific information on relevant traits and physiological parameters are established

  • The strains in our study are representative for a wide range of genetic origins and belonged to 6 of the 7 mouse groups separated based on single nucleotide polymorphism (SNP) analysis (Petkov et al, 2004): Bagg Albino Derivatives: A/J, AKR/J, Balb/cJ, C3H/HeJ, C3H/HeOuJ, CBA/J, LG/J, MRL/MpJ; Swiss mice: BUB/BnJ, FVB/NJ, MA/MyJ, NOD/ShiLtJ, RIIIS/J, SJL/J, SWR/J; Japanese and New Zealand inbred strains: KK/HlJ, NON/LtJ, NZB/BINJ, NZO/HlLtJ, NZW/LacJ; C57/58 strains: C57BL/6J, C57BL/6NJ, C57BL/6NCrl, Castle’s mice: 129S1/SvImJ, 129X1/SvJ, BTBR T Itpr3/J, LP/J; and the C

Read more

Summary

Introduction

MATERIALS AND METHODSBasic physiological and metabolic parameters are influenced by the genetic background and environmental factors and have a large impact on the outcome of behavioral and other experimental studies in mice. There is little comprehensive information on the genetic variability and on sex differences of the basal metabolic rate in combination with food and water intake and on home-cage activity at near-normal housing conditions Since these parameters are of importance for the selection of inbred strains for studies related to obesity, nutrition, metabolism, locomotion and pharmacological drug dosing as well as for the development of suitable disease models, the goal of this study was to provide normative data of these parameters during day and nighttime and for both sexes. Variability of resting metabolic rate and physical activity may indirectly affect the readout of other phenotypic analysis The availability of such data represents a valuable tool for experimental designing based on the selection of particular mouse strains and for correlation analysis

Objectives
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.