Abstract
We investigate the third-order optical nonlinearity in silicon nitride (SiN) films prepared using magnetron sputtering. The large nonlinear refractive index n2 in SiN prepared at room temperature of a value of −2.00 × 10−16 m2/W and the nonlinear absorption coefficient β of 1.44 × 10−9 m/W are determined by the Z-scan method at a wavelength of 1064 nm and a pulse duration of 25 ps. The n2 is three orders of magnitude larger than that in SiN films prepared by the chemical vapor deposition method and at a wavelength of 1.55 μm. The enhanced n2 up to −6.27 × 10−16 m2/W and the slightly changed β, indicating an enhanced ratio of |Reχ(3)|/|Imχ(3)|, are further obtained in the annealed samples. Such a change is probably due to the crystallization of the films. The optical bistability in SiN resonant waveguide grating (RWG) is numerically studied. The low threshold intensity around 300 MW/cm2 in the RWG is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.