Abstract

Recent studies show that Thioredoxin (Trx) possesses a neuronal protective effect and that Trx inactivation is closely related to cerebral ischemia injury. Peroxynitrite (ONOO−) formation may trigger oxidative/nitrative stress and represent a major cytotoxic effect in cerebral ischemia. The present study was conducted to validate whether treatment with recombinant human Trx-1 (rhTrx-1) would attenuate ONOO− generation and oxidative/nitrative stress in focal transient cerebral ischemia. The results showed that intravenously administered rhTrx-1 (10mg/kg) significantly improved neurological functions and reduced cerebral infarction and apoptotic cell death following cerebral ischemia. Neuronal ONOO− formation was significantly attenuated after rhTrx-1 treatment. Moreover, rhTrx-1 resulted in a significant decrease in antioxidant capacity and p38 mitogen activated protein kinase (MAPK) activity in ischemic brain tissue. Furthermore, the suppression on ONOO− formation by either rhTrx-1 or an ONOO− scavenger uric acid reduced cerebral infarct size in mice subjected to cerebral ischemia. Peroxynitrite donor SIN-1 not only blocked the neuronal protection of rhTrx-1 but also markedly attenuated rhTrx-1-induced antioxidative/antinitrative effect. We concluded that rhTrx-1 exerts an antioxidative/antinitrative effect against cerebral ischemia injury by blocking ONOO− and superoxide anion formation. These results provide the information that thioredoxin is much more likely to succeed as a therapeutic approach to diminish oxidative/nitrative stress-induced neuronal apoptotic cell death in the ischemic brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.