Abstract

We have theoretically investigated the adsorption of thiophene, benzothiophene, dibenzothiophene on Na(I)Y and rare earth exchanged La(III)Y, Ce(III)Y, Pr(III)Y Nd(III)Y zeolites by density functional theory calculations. The calculated results show that except benzothiophene adsorbed on Na(I)Y with a stand configuration, the stable adsorption structures of other thiophenic compounds on zeolites exhibit lying configurations. Adsorption energies of thiophenic compounds on the Na(I)Y are very low, and decrease with the increase of the number of benzene rings in thiophenic compounds. All rare earth exchanged zeolites exhibit strong interaction with thiophene. La(III)Y and Nd(III)Y zeolites are found to show enhanced adsorption energies to benzothiophene and Pr(III)Y zeolites are favorable for dibenzothiophene adsorption. The analysis of the electronic total charge density and electron orbital overlaps show that the thiophenic compounds interact with zeolites by π-electrons of thiophene ring and exchanged metal atom. Mulliken charge populations analysis reveals that adsorption energies are strongly dependent on the charge transfer of thiophenic molecule and exchanged metal atom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.