Abstract
This paper describes a series of thiophene-based conjugated polymers that become insoluble upon irradiation with ultraviolet light. Stille or Suzuki reactions of appropriately substituted 2,5-bromothiophene derivatives yielded terthiophene and polythiophene derivatives with either o-nitrobenzyl (ONB) ester or ONB ether photolabile side chains with n-octyl substituents. Light-induced cleavage of these ONB side chains with ultraviolet light at 365 nm cleaves the octyl chains responsible for solubilization of the polymers away from the conjugated main chains, rendering them insoluble. Consistent with the accepted mechanism of ONB photolysis, those structural modifications that would yield a more stable benzylic radical—methyl substitution on the benzylic position, replacement of the ester with an ether, or both—yielded more efficient photolyses as determined by (i) quantum yields of photolysis of ONB-substituted terthiophenes, and (ii) the percentage of polymer that persists in UV-irradiated thin films upon ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.