Abstract

Reverse roll coating is probably the most widely used coating operation, much less investigated than its counterpart and inherently unstable forward roll coating. A new data to complement earlier work which was limited to large gaps and thus “thick” films is presented. The intention is to assess the feasibility of reverse roll coating to yield very thin films (<10 μm) at high speeds (>1 m/s) for application in the newer technologies, such as the production of solar cells and plastic electronics. The data obtained demonstrate this is possible but at the lowest permissible gap (25–50 μm) with low‐viscosity fluids (∼7 mPa s). The study also developed a new understanding of how instabilities are controlled. It was seen that the size of the inertia forces generated by the applicator roller in relation to surface tension, as expressed by the Weber number and not the applicator Capillary number (viscous forces/surface tension) which is the critical parameter. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3083–3091, 2013

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.