Abstract

The electric-pulse-induced resistance switching in layered structures composed of polycrystalline Pr1−xCaxMnO3 (PCMO) sandwiched between Pt bottom electrode and top electrodes of various metals (metal/PCMO/Pt) was studied by direct current current–voltage (I-V) measurements and alternating current impedance spectroscopy. The I-V characteristics showed nonlinear, asymmetric, and hysteretic behavior in PCMO-based devices with top electrode of Al, Ni, and Ag, while no hysteretic behavior was observed in Au/PCMO/Pt devices. The PCMO-based devices with hysteretic I-V curves exhibited an electric-pulse-induced resistance switching between high and low resistance states. Impedance spectroscopy was employed to study the origin of the resistance switching. From comparison of the impedance spectra between the high and low resistance states, the resistance switching in the PCMO-based devices was mainly due to the resistance change in the interface between the film and the electrode. The electronic properties of the devices showed stronger correlation with the oxidation Gibbs free energy than with the work function of the electrode metal, which suggests that the interface impedance is due to an interfacial oxide layer of the electrode metal. The interface component observed by impedance spectroscopy in the Al/PCMO/Pt device might be due to Al oxide layer formed by oxidation of Al top electrode. It is considered that the interfacial oxide layer plays a dominant role in the bipolar resistance switching in manganite film-based devices.

Highlights

  • IntroductionA large resistance change by the application of an electric pulse was observed at room temperature in metal oxides such as Pr1−xCaxMnO3 (PCMO) [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31]

  • The electric-pulse-induced resistance switching in manganite film-based devices with various metal electrodes of Al, Ni, Ag, and Au was studied by dc current–voltage measurements and ac impedance spectroscopy

  • The electrode material dependence of the resistance switching in polycrystalline manganite films was investigated in more detail by impedance spectroscopy

Read more

Summary

Introduction

A large resistance change by the application of an electric pulse was observed at room temperature in metal oxides such as Pr1−xCaxMnO3 (PCMO) [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31] This effect provides a possibility of a next-generation nonvolatile memory, called resistance random access memory (ReRAM). Based on impedance spectral data, the electrode material dependence of the resistance switching in the PCMObased devices was discussed by correlating with the standard Gibbs free energy of the formation of metal oxides and the work function of each electrode metal

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.