Abstract

Quantitative understanding of variability in weathering fluxes on the modern Earth is limited because little is known about where the most important weathering reactions take place. This is partly because the locus of weathering is difficult to measure empirically. Inverse analysis of a parametric model presented here provides first-order constraints on variability in the thickness of the zone of active weathering. Results suggest that the effective thickness of the weathering zone varies relatively little across several orders of magnitude of denudation rate. At low to moderate denudation rates, reactions in soils may dominate weathering fluxes at the catchment scale, but the contribution from soil weathering decreases at higher denudation rates. Consequently, increased erosion leads to higher weathering fluxes, sustained by progressively greater contributions from weathering in bedrock. The effect of climate (temperature and runoff) on weathering fluxes is apparently weaker at low denudation rates than at high denudation rates, such that erosion, and potentially associated bedrock weathering, may be important for maintaining climate-stabilizing feedbacks in Earth’s carbon cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.