Abstract

AbstractThe intimate coexistence of multiple phases in ferroelectrics has been shown to result in exotic electromechanical properties, such as giant piezoelectricity. Here, via a thickness‐driven phase transition, the phase coexistence and enhanced piezoelectricity in a few tens of nanometers thick, Pb‐free CaTiO3 films are demonstrated. Due to the competition between interfacial and bulk energies, as film thickness increases, epitaxial CaTiO3 films exhibit a ferroelectric‐to‐paraelectric phase transition that is concomitant with the rhombohedral‐to‐orthorhombic structural transition. This so‐called thickness‐driven morphotropic phase transition (MPT) in nanoscale CaTiO3 films stems from the metastable nature of ferroelectricity. The resulting morphotropic phase boundary at the atomic scale in nanoscale CaTiO3 films is visualized. It is also shown that this thickness‐driven MPT can lead to reasonably good piezoelectricity at the nanoscale. This study highlights the rich phase evolution of complex ferroelectrics as a novel platform to control the functionality of nanoscale electromechanical devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.