Abstract

We use a digital elevation model (DEM) derived from interferometrically processed SIR-C radar data to estimate the thickness of massive trachyte lava flows on the east flank of Karisimbi Volcano, Rwanda. The flows are as long as 12 km and average 40–60 m (up to >140 m) in thickness. By calculating and subtracting a reference surface from the DEM, we derived a map of flow thickness, which we used to calculate the volume (up to 1 km3 for an individual flow, and 1.8 km3 for all the identified flows) and yield strength of several flows (23–124 kPa). Using the DEM we estimated apparent viscosity based on the spacing of large folds (1.2×1012 to 5.5×1012 Pa s for surface viscosity, and 7.5×1010 to 5.2×1011 Pa s for interior viscosity, for a strain interval of 24 h). We use shaded-relief images of the DEM to map basic flow structures such as channels, shear zones, and surface folds, as well as flow boundaries. The flow thickness map also proves invaluable in mapping flows where flow boundaries are indistinct and poorly expressed in the radar backscatter and shaded-relief images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.