Abstract

By quenching water on a liquid nitrogen cooled diamond wafer, we have produced 0.7 mm thick glassy water disks about 1000 times thicker than previously produced by quenching liquid water. Our in situ measured cooling rates of 110−271 K/s are far lower than the 105−106 K/s previously thought necessary for formation of a glass from liquid water. Conversely, these are also the highest measured cooling rates that we are aware of for quenching this thickness of water. The glassy disks quenched on diamond are transparent, have a density of 1.04 g cm-3, and exhibit a glass-transition temperature of 138 K and a crystallization temperature range of 150−190 K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.