Abstract

We report a synthetic route to thiazolium-type poly(ionic liquid)s (PILs), which can be applied as a polymeric binder in lithium-ion batteries. The ionic liquid monomers were first synthesized by quaternization reaction of 4-methyl-5-vinyl thiazole with methyl iodide, followed by anion exchange reactions to replace iodide by fluorinated anions to access a liquid state below 100 °C. Subsequently, these monomers bearing thiazolium cations in their structure underwent radical polymerizations in bulk to produce corresponding polymers. The dependence of solution and thermal properties of such monomeric and polymeric materials on the choice of the counteranion was investigated. Finally, the thiazolium-type PIL bearing a bis(trifluoromethanesulfonyl)imide (TFSI) anion was proven to be a high performance binder for lithium-ion battery electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.