Abstract

Thiazide diuretics have the unique characteristic of increasing renal Na+ excretion, while decreasing Ca2+ excretion. However, the molecular mechanism responsible for this thiazide-induced hypocalciuria remains unclear. The present study investigates the effect of thiazides on the expression of the proteins involved in active Ca2+ transport as well as the role of extracellular volume (ECV) status. Hydrochlorothiazide (HCTZ), 12 mg/24 hours, was administered during 7 days to Wistar rats by osmotic minipumps. In addition, ECV contraction was either prevented by Na+ repletion or induced by a low-salt diet. Expression levels of the proteins involved in active Ca2+ transport [i.e., epithelial Ca2+ channel (TRPV5/ECaC1), calbindin-D28K, Na+/Ca2+ exchanger (NCX1)], as well as the thiazide-sensitive Na+ Cl- cotransporter (NCC) were determined by real-time quantitative polymerase chain reaction (PCR) and semiquantitative immunohistochemistry. HCTZ significantly reduced urinary Ca2+ excretion (22%+/- 5% relative to controls). Hematocrit was significantly increased, confirming ECV contraction. In addition, Na+ depletion virtually abolished Ca2+ excretion (8%+/- 1%), while Na+ repletion during HCTZ treatment prevented both ECV contraction and hypocalciuria. HCTZ significantly decreased mRNA expression of TRPV5 (71%+/- 6%), calbindin-D28K (53%+/- 6%), NCX1 (51%+/- 8%) and NCC (50%+/- 11%), regardless of ECV status or calciuresis. Immunohistochemistry revealed reduced TRPV5 (43%+/- 2%), calbindin-D28K (59%+/- 1%) and NCC (56%+/- 4%) abundance. Furthermore, during HCTZ treatment, the subset of tubules coexpressing NCC and calbindin-D28K was significantly reduced (43%+/- 5%) and a disturbed cellular localization of NCC was observed. These data suggest that ECV contraction is a critical determinant of the thiazide-induced hypocalciuria, which is accompanied by a decreased expression of Ca2+ transport proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.