Abstract

As an appealing biomimetic strategy for various medical applications, cell membrane coating lacks sensitive on-demand breaking capability. Herein, we incorporated thermosensitive lipid (TSL) membrane into red blood cell (RBC) and MCF-7 cancer cell (MC) hybrid membrane ([RBC-MC]M) vesicles. The [RBC-MC-TSL]M was coated onto doxorubicin (Dox)-loaded hollow gold nanoparticles to enhance chemo-/photothermal combined tumor therapy at a mild hyperthermia temperature (≤49 °C). Double-layer coating with TSL and [RBC-MC-TSL]M as the inner and outer layer, respectively, presented better antileakage and higher NIR-responsivity than single-layer coating. The Dox release ratio upon NIR laser irradiation (≤49 °C) was 74.6%, much higher than that (33.5%) without NIR laser. The nanodrug can be efficiently and specifically taken up by MCF-7 cells. In addition, the nanodrug exhibited excellent tumor-targeting property, with 4.08- and 1.12-times Dox accumulation in MCF-7 tumors compared to free Dox and [RBC-MC]M-coated counterpart, respectively. Most importantly, TSL incorporation significantly enhanced NIR-responsive antitumor efficiency, with tumor growth inhibition ratio increased from 35.1% to 48.6% after a single dose administration. Besides, the nanodrug exhibited very good biocompatibility. Camouflaging nanoparticles with the thermosensitive biomimetic hybrid membrane provides a painless and promisingly clinical-applicable approach for effective chemo-/photothermal combined mild-hyperthermia tumor therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.