Abstract
We describe a poly(ethylene oxide) (PEO) homopolymer "shuttle" between water and a hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]). PEO homopolymers with varying molecular weight transferred reversibly and quantitatively between water at room temperature and [EMIM][TFSI] at an elevated temperature. The temperature of the transfer from water to [EMIM][TFSI] shows a linear dependence on PEO molecular weight and a dependence on polymer concentration consistent with expectation based on Flory-Huggins theory. These results are also consistent with the previously observed lower critical solution temperature (LCST) behavior of PEO in water. Dynamic light scattering study of the concentration and temperature dependence of the swelling degree of PEO corona of polybutadiene (PB)-PEO block copolymer micelles indicates that the solvent quality of [EMIM][TFSI] for PEO remains essentially the same as a good solvent over the temperature range of the PEO shuttle. Fundamental understanding of the PEO shuttle is of significance in development of systems for phase transfer of reagents and reaction products between ionic liquids and water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.