Abstract

Water-in-oil-in-water (W/O/W) Pickering double emulsions are promising materials for the construction of carriers for water-soluble and oil-soluble molecules or drug delivery systems if the contradictive trade-off between their extreme stability and controlled release properties can be resolved. In this study, biodegradable and biocompatible poly(ethylene glycol)-b-poly(ε-caprolactone-co-δ-valerolactone) (PEG-b-PCVL) diblock copolymers with predesigned hydrophilic to hydrophobic block length ratios and nearly identical ε-caprolactone/δ-valerolactone molar ratio (8/2), were synthesized by ring-opening copolymerization. Then, they self-assembled to create semicrystalline micelles. The melting points of PEG-b-PCVL copolymers and their lyophilized micelles were within a physiological range of temperatures, as determined by differential scanning calorimetry. Water contact angle measurements provided evidence that the surface wettability of PEG-b-PCVL micelles could be tuned by the PCVL block mass fractions or temperature stimulus. Such PEG-b-PCVL micelles were employed as a single particulate stabilizer to develop Pickering double emulsions through a one-step emulsification technique. W/O/W Pickering double emulsions could be generated using relatively hydrophobic PEG-b-PCVL micelles with high mass fractions (exceeding about 89%) of PCVL blocks, and they displayed excellent long-term physical stabilities at room temperature. However, the Pickering double emulsions underwent a rapid microstructural transition into simple oil-in-water Pickering emulsions instead of complete demulsification at elevated temperature (37 °C), which was attributed to the hydrophilicity of micelles enhanced when the core-forming PCVL melted realized by temperature stimulus. Consequently, such W/O/W Pickering double emulsions stabilized solely with semicrystalline PEG-b-PCVL micelles exhibit thermal responsiveness, enabling them to release vitamin B12 encapsulated within the internal aqueous phase rapidly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.